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The propagation of plane waves in media endowed with bulk viscosity and characterized 
bylinear dynamic and static compression p--V diagrams has been investigated earlier [1,3]. 
For a large pressure differential it is necessary to take account of the nonlinearity of 
these diagrams, and in the case of spherical waves in solids in is also necessary to include 
the plasticity condition. The Mises--Schleicher plasticity condition has been proposed for 
soils and rocks [4]. Spherical detonation waves have been analyzed for a nonlinear compres- 
sion p--V diagram in multicomponent media (water-impregnated soils, water containing gas bub- 
bles, etc.) without regard for viscosity [5], and the same has been done for plane waves with 
allowance for viscosity, but in the case of steady shock loading [6]. 

In the present article we use the method of characteristics to solve the problem of 
propagation of a plane wave generated by nonsueady shock loading in a medium with bulk vis- 
cosity for nonlinear dynamic (impact) and static (corresponding to the equilibrium state) com- 
pression p--V diagrams. We use a special model of a multicomponent medium [3] to perform com- 
puter calculations. We carry out simultaneous calculations for the same medium without vis- 
cosity and ~ith a p--V diagram corresponding to static compression. 

We use other models as well [7-14] to investigate waves in viscous media. Godunov and 
Kozin's equation for the medium [7] include viscoelastic terms corresponding to the Maxwell 
model. Babe and others [8] introduce a viscosity term in the Mises--Schleicherplasticity 
condition. Koshelev's medium [9] obeys the Kelvin--Voigt model in the uniaxia! stressed state 
and is not compressed in the complex stressed state, the plasticity condition depending on 
the strain rate. Zubkova and Rykov [I0] recommend the Mises--Schleicher plasticity condition 
to account for the influence of strain rate on compressibility. Ting [Ii] uses the Maxwell 
model with a temperature-dependent viscosity coefficient. According to Akoi and Hori [12], 
a viscoelastic relation exists between the stress and strain deviators. Jong and others [13] 
apply the Kelvin--Voigt model to soils. Zabinski and Phillips [14] find that the medium is 
elastic in hydrostatic compression and has viscous properties in shear loading. 

w The following notation is used in our model [3] for a three-component medium. At 
atmospheric pressure Po (~, ~2 and ~3 are the volumetric contents of the gaseous, liquid, 
and solid components; V~o, V2o, and V3o are their specific volumes, respectively, P~o, P2o, 
P ao are the densities; c:o, c2o, c3o are the sound velocities in them; Po is the density of 
the medium; and Vo is its specific volume) and at pressure p (the corresponding specific vol- 
umes, densities, and velocities are V~, V2, V3, P~, P2, P3, c:, c2, and ca, respectively; 
the density of the medium is fi; and its specific volume is V) we have the relations 

,% = c~191o q-  ~,~ --'. ~393o, cq --1 ~ q-  ~a = I. 

The following equations are postulated for all components in the free state: 

",'~ L k T f J  - , 

where i is 1:he component identification number. 

Equation (i.I) corresponds to the Poisson adiabat for the gas and to the Tare equation 
for the other components. The gas exists in bubble form in the medium. The compression of 
the bubbles, which are isolated by the Other components, takes place under loading in a fi- 
nite time due to the displacement of the other components and filling of the bubble interiors 
with those components. We assume, therefore, that the compression of the gas in the bubbles 
(in the medium) obeys the law 
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(n is the bulk viscosity coefficient of the medium). The other components are compressed as 
in the free state. 

The compressibility equation for the three-component medium under these assumptions has 
the form [3] 

r~ 
l ' :1 'o = q'(P)l; - -  = i g ' ( P ,  F)/~l, ( i .  2) 

where 

C[ (.p) = - -  - 1 ~ (1), V )  = p -- P 0 0 ~  t -- 0~i "g'. 1 o o . / ~  �9 
�9 ~=_,. P~oC~o P!oc'qo P/otTo ] i=2 

The dynamic compressibility equation (~" + =, p + ~) is 

3 
VD .---= iT. 1 -~- "~ [ ":i (p "v~ i] -j/;i dYD ( 1 . 3 )  

v o  - -  ~ ~ ~ , q a ( p ) = p o  @ -  ~=:2 P~0cT0 .1 

The static compressibility equation (V + 0, p § 0) is 
3 .. '~ - -  p,:,~ ]-!/;,~. I"s ~ ,-z v, 

-~-= ~i I (1.4) 
o ~ ! 9f.0c70 

The dynamic compressibility of water containing gas bubbles corresponds to the compres- 
sibility of water, whereas for water-impregnated soil it corresponds to the compressibility 
of a two-component medium consisting of solid and liquid components. The gas is incompressi- 
ble in shock compression of the medium. The static p--V diagram corresponds to the equilib- 
rium state, where all components are compressed to the appropriate limit for the acting pres- 
sure [according to Eqs. (i.i)]. 

We use Lagrange variables: the spatial coordinate r and the time t. 

In the initial cross section r = 0 at time t = 0, the pressure jumps instantly from Po 
to p and then varies according to the law 

p = ?~, - -  p ,~ .e-~ , t  (1.5) 

We propose to determine the parameters of the wave generated in the medium by this load. 

The fundamental equations of motion are 

as; ~ "  = ' 3  a~ , ! aP__O. ( 1 . 6 )  
07" 9o ~ " " 6t Po &" 

The solution is reduced to integration of the system (1.6) closed by Eq. (1.2) and sub- 
ject to the boundary conditions (1.5) in the initial cross section and, at the discontinuity 
(precursor), 

7: - -  Po = f, ouD, (9 - -  9o)D = 9u.  

To determine the influence of the bulk viscosity on the wave parameters we solve the same 
problem for the medium without viscosity, characterized by a compressibility and unloading 
equation coinciding with the static compressibility equation (1.4) for the viscous medium. 

We transform to dimensionless variables and dimensionless Lagrange variables 

po = P:Po; T -~ = I ' l l-o,  z~ . ~  ~,'c~., D O = D'c~..  x ~  A t  '"o11. 1o= A c ~ : ' g q .  
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In these variables the fundamental equations are 

&:'~ ~'V~ - -  0 .  O:lo 
O,r: 0!" Or" 

P0 gpO 

9,~C~ ',)X '~ 
=o; 

the loading in the initial cross section is 

iD ~ == i - - _ ; % 7 ~ : r  

~"-' = A c  <0 ',Sq - :  ;' cl Z -- A z  .SL: 

the equation describing the behavior of the medium is 

:'~ <' _ q.o ( p o )  _ o,.l~l.o (pO,  ,. 
.,i " O r  " 

- -  %, ! 

~po ,,~o: __ ~ "z:po !'_,'; y" - " ?-, ";z 
..,,, p:o~7,:, ,-..c,.t I I . ._ j 

r  . . . .  ( , o .  ~/o) = .--47-:. I z-" - cD" r ~ ,.~" "~ ('~,.%Jio~ S,o 1 - "]  , 
i.- 

A = (~2p2f + a:lp..to 111'> I r 2 c~s ~-1/2 

(A is the acoustic impedance of the two-component medium surrounding the gas bubbles). The 
viscosity coefficient q is determined experimentally. Approximate values of q can be ob- 
tained from the equation [3] 

~ A r o ' 3 .  

The calculated values of q for gas bubbles of radius ro = I0 -s m are given in Table i. In 
this case the dimensionless variables take the form 

x ~ r , r o ,  t o c n t ,  ro, 0 ~ c ' - -  ~ -= 710,, F 0 . 

In the new variables, the problem involves one less parameter than in the old variables. 
The solution is determined by the product %0. This fact permits the results of a single cal- 
culation to be applied to several media (with different values of ~) or loads (with different 
values of 0). 

The di~mnsionless equation describing the behavior of the nonviscous media, according to 
(1.4), has the form 

3 

V ~ = . ' ~  czi  - - t . 
~ -~  P~C~o 

We haw~ solved the problem on a computer by the method of characteristics, which has 
been applied earlier to nonviscous media [15, 5] and to bulk-viscous media [3, 6]. For the 
calculations we used the parameters Plo= 1.29 kg/m 3, P2o = 10 3 kg/m s, pso = 2.65 �9 l0 s kg/m s, 

Clo= 330 m/set, C=o = 1500 m/set, Cso = 4500 m/set, YI = 1.4, Y2 = 7, Ys = 4, c n = 4250 
m/set. 

w The calculations show that an elastic shock (precursor) begins to propagate from the 
initial cross section in the viscous medium at the instant of application of impact loading. 
At short distances the post-shock pressure decreases, at fairly large distances it continues 
to increase and then decrease, and at still greater distances the magnitude of the shock is 
almost equal to zero, the disturbance degenerating into a continuous compression wave~ 

We now discuss the results of calculations of the pressure, particle velocity, and volume 
in a three-component medium (water-impregnated soil) with ~i = 0.01, ua = 0.39, as = 0.6 under 
loading with pO= 50 and 0 ~ = 5000. Figure 1 gives the diagrams V~(p ~ and u in dynamic 
and static compression of this medium, calculated according to (1.3) and (1.4). Curves 0-5 
represent the variations of the state Of particles of the medium at distances x ~ = 0, 20, i00, 
500, i000, and 2000, respectively. In the course of wave propagation at each distance, after 
the precursor shock originating along the dynamic diagram, the state of the particles gradu- 
ally approaches the static diagram and crosses over into the region of smaller volumes. As 
the wave moves farther along, smearing causes the compression and loading regime to approach 
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the static regime. The minimum volume is attalned, not at the pressure maximum, but during 
the period of its decline. 

Figure 2 gives the time variation of the pressure at fixed particles. Curves 0-5 refer 
to particles with coordinates x ~ = 0, 20, i00, 500, i000, and 2000, respectively. The solid 
curves represent the pressure in the viscous medium and the dashed-dot curves correspond to 
the pressure in the nonviscous medium. 

Close to the initial cross section in the viscous medium, the wave represents a shock. 
The magnitude of the shock decreases with distance, and for x ~ z 500 it is practically equal 
to zero. For x ~ ~ 20 the pressure in the viscous medium has two maxima, and at large dis- 
tances it has just one maximum. In the latter case a continuous growth, and then a decrease, 
of the pressure takes place behind the shock. The presence of two maxima close to the point 
of application of the load has been noted in a medium with linear dynamic and static compres- 
sion p--V diagrams [16]. The magnitudes of the shocks are indicated by circles. 

The precursor velocity is determined by the dynamic compression diagrams and, due to the 
nonlinearity of the diagram, decreases with distance. The velocity of propagation of the 
pressure maximum is less than the precursor velocity. It increases with distance at first, 
then decreases,and comes close to the wave velocity in the nonviscous medium, but it can at- 
tain even smaller values. 

The pressure maximum is overtaken by the shock in the nonviscous medium, and near the 
initial cross section it is greater than in the viscous medium. With increasing distance the 
values of the maxima for both media approach one another. The pressure in the nonviscous 
medium can become less than in the viscous medium. The difference between the maximum pres- 
sures with and without viscosity taken into account is small, not more than a few percent. 
The decay of the pressure at the particles with time near the initial cross section differs 
in the two cases, but with greater distance it is practically the same. The bulk viscosity 
causes the wave to smear, altering its profile mainly in the pressure growth period. 

Figure 3 gives the time variation of the particle velocities u ~ at distances x ~ = 0, 500, 
i000, and 2000 (curves 0, 3-5, respectively). The curves have the same numbering scheme as 
in Fig. 2. At all distances in the viscous medium, the velocity grows continuously after the 
shock. With increasing distance the shock tends to zero, aad the time at which the maximum 
is attained increases. The velocity attains its maximum in the period of declining pressure. 
The maximum particle at all distances in the viscous medium is smaller than in the nonvis- 
cous medium. 

Figure 4 gives the time variation of the volume for x = 0, 500, i000, and 2000 (curves 
0, 3-5, respectively). In the viscous medium, the volume drops abruptly (at the precursor), 
continues to decrease to a minimum, and then increases to the initial value. The magnitude 
of the volume drop decreases to zero with distance. The volume changes abruptly in the non- 
viscous medium, and its external value is several percent greater than in the viscous medium. 

The curves in Fig. 5 illustrate the dependence of the maximum pressure in the wave on 
the distance in the same three-component viscous medium under a load pO = 50, but for differ- 
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ent values of e ~ For a constant viscosity coefficient, this situation is equivalent to dif- 
ferent values of e. Curves 1-3 correspond to values of e ~ = ~ (steady load), 5000, and 500, 
respectively, and curve 0 corresponds to the pressure at the precursor. In the region where 
the wave is a shock, the maximum pressure is attained at the precursor. For 8 ~ = ~ curves 1 
and 0 originate from a common point. The precursor pressure does not depend on the value of 
0 o . With a decrease in e ~ the decay rate of the maximum pressure with distance increases. 
Figure 5 also gives the paths of the precursor and pressure maximum. The velocity D o of 

propagation of the maximum at all ,distances decreases with the value of e ~ With increasing 
distance from the initial cross section D ~ increases at first, and then decreases. For e ~ = 

the velocity becomes constant after the growth and decay period. For finite values of e ~ 

the velocity decreases with distance to a value corresponding to the velocity of sound calcu- 
lated according to the static diagram for pO § i. For pO = 50 and e ~ = ~, 5000, and 500, 

the maximum values of D o are approximately 0.14, 0.12, and 0.08, respectively. The maximum 
D o for 8 ~ = 500 is attained at a distance x ~ ~ i00. The maximum values of D ~ diminish ap- 

preciably as the value of e ~ is decreased. The maximum precursor velocity in this case at- 
tains a value roughly equal to 0.4. 

It follows from the calculations carried out for identical loads in the initial cross 
section and different proportions of the gaseous component in the medium that the rate of de- 
cay of the wave with distance increases with the value of ~, consistent with experiment [3]. 
An increase of ~ is equivalent to an increase of the difference between the dynamic and 
static p--V diagrams, which increases the energy losses associated with wave propagation. 

The dependence p~176 for a viscous medium with ~z = 0.01, ~2 = 0.39, and ~3 = 0.6 is 
plotted in Fig. 6 for p~ = i04 and 0 ~ = I00. The maximum load in the initial cross section 
is 200 times greater, and the time 0o smaller by 1/50, than in the case of a wave having the 
profile in Fig. 2. Curves 0-6 refer to distances x ~ = 0.5 - i03, I0 ~, 2 �9 i0 ~, 3 �9 i04, 4 . 
i04, and 5 �9 i0 ~, respectively. At a distance 5 �9 i0 ~ the maximum pressure is less by about 
one-tenth than in the initial cross section. The pressure rise time to the maximum is approxi- 
mately 230, i.e., greater than e ~ In Fig. 2 the pressure has decreased by about 1/5 at a 
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distance of 2 �9 103 , and the rise time is greater than I0,000, i.e., very much greater than 
8 ~ The wave profile changes considerably in both cases. 

The values calculated for the maximum pressure with allowance for viscosity in water- 
impregnated solid and in water containing gas bubbles with identical proportions of the gas- 
eous component ~i = O.01, for a pressure pO = 50 and time 8 ~ = 5000, are given in Table 2. 
In water the pressure falls off more slowly with the distance x ~ than in water-impregnated 
soil. 

Thus, bulk viscosity of a medium with nonlinear limiting compression p--V diagrams causes 
shock smearing, as was found earlier for the case of linear p--V diagrams [I, 3]. A precursor 
goes first, its velocity decreasing with distance in correspondence with the dynamic diagram, 
until it attains the velocity of sound. The magnitude of the precursor shock tends to zero 
in this case. The velocity of propagation of the pressure maximum increases at first with dis- 
tance, and then decreases, gradually approaching the value determined by the static p--V dia- 
gram. In the limit, the velocity of the maximum decreases to the velocity of sound calcu- 
lated from the static diagram. The maximum pressure tends to zero in this case. 

The external values of the pressure, volume, and particle velocity, calculated with and 
without viscosity, are close to one another, the differences amounting to just a few percent. 
This result shows that the extremal values of the parameters can be estimated at large enough 
distances from the point of application of the load without concern for the viscosity, using 
the static diagram. On the other hand, the wave profile differs considerably according to 
whether viscosity is ignored or not. The wave profile, pressure rise time to the maximum, 
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TABLE 2 

a "~ 250 500 tO00 t 5 0 0  20o0 Medium 

pO 34 29 2t 15 i3 Water with gas bubbles 

pO / 28 24 17 I 13 9 Water- impregnatedsoi l  
1 I 

and delay time of the particle velocity and volume relative to the pressure can be calculated 
only according to the model with viscosity. Waves with identical maximum pressure but dif- 
ferent rise times to the maximum create different loads. This fact must be taken into ac- 
count in deciding on the model for solution of a particular problem. We also point out that 
the investigated media are characterized by a relatively small difference between the dynamic 
and static compression p--V diagrams and by a bulk viscosity coefficient such as ensures rapid 
transition of the state of the medium from the dynamic to the static regime. The possibility 
of calculating the extremal values from the static diagram applies to such media. 

The bulk viscosity is a property common to dense media: soils, rocks, metals, plastics, 
etc. Its qtmntitative manifestation is determined by theextent of the difference between 
the dynamic and static p--V diagrams, as well as by the value of the viscosity coefficient. 
In low-porosity rocks and metals, the differences between the limiting diagrams are small, 
and the state of the medium proceeds rapidly to the static diagram. In this case, as for 
water-impregnated soil, the allowance for bulk viscosity results in wave smearing, and the 
extremal values of the parameters vary only slightly, so that they can be calculated approxi- 
mately from the static diagram. In highly porous rocks and in nonimpregnated soils, the dif- 
ferences between the limiting diagrams are large. Now the bulk viscosity leads to more pro- 
nounced waw~ smearing and variation of the extremal values of the parameters [3]. The general 
laws describing the deformation of dense media under dynamic loading depend significantly on 
the bulk viscosity and cannot be formulated solely on the basis of one of the limiting p--V 
diagrams in compression and unloading. 
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RELATION BETWEEN STATIC MECHANICAL CHARACTERISTICS AND IMPULSE 

STRESS IN METAL RODS 

V. M. Glazkov, L. A. Kudryavtseva, 
and V. I. Sukhin 

UDC 624.042.8:546.3.004.12 

The basic difficulty in creating methods of calculation for the dynamic strength of 
systems and structures is the fact that the mechanical properties of the materials to be 
used in the construction have been insufficiently studied for dynamic loading. Existing 

odY n i.e. the stress papers [1-6] most frequently specify the value of the yield stress s , 
where irreversible plastic deformations begin to occur. However, the dynamic yield stress 
depends on the state of the material and on its static mechanical characteristics. For the 
purposes of investigation we took different materials as they were supplied and with differ- 
ent heat treatments (see Table I). 

The static mechanical characteristics were determined on a Gargarin press and an R-10 
tension device in which the extension diagram was recorded. 

The dynamic yield stress was determined by means of wire resistance strain gauges with 
a base length of I0 mm and a resistance of I00 fl attached to the cylindrical rods (of length 
150 mm and diameter i0 mm) at a distance of 120 mm from the impact end. The rod was set 
freely at a distance of 40 mm from the end of the shaft guides and centered accurately. The 
load was applied by means of a steel cylinder of length i0 mm and diameter i0 mmwhich was 
propelled with a velocity of the order of 500 m/set. The sensor on the rod under investiga- 
tion was included in an ordinary bridge circuit. The impulse corresponding to the dynamic 
yield stress, transmitted by the rod as a result of the blow of the cylinder-missile was re- 
corded by means of an OK-17 Moscillograph. A more detailed account of the method and the 
calculation of the dynamic yield stress are given in [3]. 

Data determined for the mechanical characteristics (Oo.u is the yield stress, ~c is the 
tensile strength, S k is the true tensile strength) and for the dynamic yield stress o~ yn are 
given in Table i. 

TABLE i 

Material 

Aluminum (annealed at 30O'C) 
Copper (annealed at 500*C) 

(as supplied) 
Nickel (annealed at q00"C) 
Nictel (as supplied) 
Alloy D1 (as supplied) 
8r. A7 (as supplied) 
l10G:13BL (impact hardened) 

St 3 (annealed at 700"C) 
Steel 45 (annealed at 700"C) 
Steel 45 (as supplied) 
4Kh13 (hardened+ annealed at 500~ 
ShKh15 (as supplied) 
ShKh15 (hardened + annealed) HR C 35-40 
ShKh15 (hardened + annealed) HR C 45-50 
ShKhl5 (hardened) HR C 60-62 

aO,2 ~c Sk 

kg /mm z 

4,3 8,4 
7,i 22,4 
9,2 23,7 

tJ ,5  45 
- -  47 
15,5 23,2 
20,3 48 
86 it2 
20,9 40,6 
35,5 65,4 
41,2 74,8 

i02 127,8 
44,4 71,7 

t63 17t,7 
174 i83,5 

i 195,5 2t1,1 

3i,2 
76,3 
69,4 

2'15 
208 
36,7 

i22,6 
t25 
96 

tt3,1 
tt7,3 
16Q,4 
1 3 i  
220,2 
225,4 
224,5 

ody n 

is 
32 
30 
..43 
55 
23 
51 
93 
80 
62 
82 

109 
55 

t 6 i  
t70 
194 

%dyn/ao 2 

0,2 

4,2 
4,5 
3,3 
3,8 

t,5 
2,5 
i , l  
3,83 
t,75 
i,99 
1,07 
i,2 
0,99 
0,98 
0,99 
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